Extra Practice

In Exercises 1–8, let $f(x) = \sqrt{x+3}$, g(x) = 4x-3, and $h(x) = 3x^2+3$. Find the indicated value.

1.
$$f(g(9))$$

2.
$$g(f(6))$$
 3. $g(h(1))$

3.
$$g(h(1))$$

4.
$$h(g(0))$$

5.
$$h(f(-2))$$

6.
$$f(h(5))$$

7.
$$g(g(1.5))$$

5.
$$h(f(-2))$$
 6. $f(h(5))$ **7.** $g(g(1.5))$ **8.** $f(f(-2))$

In Exercises 9–16, let $f(x) = \sqrt{x-6}$, g(x) = 2x - 5, and $h(x) = x^2 - 3$. Find the indicated value.

9.
$$f(g(10))$$

10.
$$g(f(31))$$
 11 $g(h(1))$

11
$$g(h(1))$$

12.
$$h(g(2))$$

13.
$$f(h(5))$$

14.
$$h(f(42))$$

13.
$$f(h(5))$$
 14. $h(f(42))$ **15.** $g(g(\frac{3}{2}))$

16.
$$h(h(1))$$

In Exercises 17–26, find (a) f(g(x)), (b) g(f(x)), and (c) f(f(x)). State the domain of each composition.

17.
$$f(x) = 6x, g(x) = x - 2$$

18.
$$f(x) = x + 7, g(x) = |x - 9|$$

19.
$$f(x) = 4x^2$$
, $g(x) = x - 2$

19.
$$f(x) = 4x^2$$
, $g(x) = x - 2$ **20.** $f(x) = x^2 + 2$, $g(x) = 2x - 3$

21.
$$f(x) = 2x^{-1}, g(x) = 3x - 9$$

21.
$$f(x) = 2x^{-1}$$
, $g(x) = 3x - 9$ **22.** $f(x) = -3x^{-1}$, $g(x) = x^2 - 4$

23.
$$f(x) = 2x + 5, g(x) = \sqrt{x - 3}$$

23.
$$f(x) = 2x + 5$$
, $g(x) = \sqrt{x - 3}$ **24.** $f(x) = 3x - 2$, $g(x) = \sqrt{2x - 2}$

25.
$$f(x) = x + 2, g(x) = x^2 + 3x - 7$$

25.
$$f(x) = x + 2$$
, $g(x) = x^2 + 3x - 7$ **26.** $f(x) = 2x - 1$, $g(x) = x^2 - 3x + 2$

In Exercises 27 and 28, let $f(x) = x^2 + 2$ and g(x) = 5x. Describe and correct the error in performing the composition.

$$\times f(g(x)) = 5(x^2 + 2)$$

$$= 5x^2 + 10$$

28.
$$g(f(x)) = g(x^2 + 2)$$

= $5x^2 + 2$

- **29.** The function C(x) = 10x + 85 represents the cost (in dollars) of producing x handbags. The number of handbags produced in t hours is represented by x(t) = 5t.
 - **a.** Find C(x(t)).
 - **b.** Evaluate C(x(40)) and explain what it represents.